¹³C Nuclear Magnetic Resonance Studies. ¹³C-¹⁴N Spin Coupling Constants in Isocyanides

By Isao Morishima,* Akira Mizuno, and Teijiro Yonezawa

(Department of Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, Kyoto, Japan)

and Kojitsu Goto

(Japan Electron Optics Laboratory Co. Ltd., Akishima, Tokyo, Japan)

Summary The ¹³C-¹⁴N nuclear spin coupling constants for isocyanides have been observed using the proton-decoupled ¹³C n.m.r. method, and the results compared with the corresponding coupling constant for cyanides together with the theoretical values obtained by molecular orbital calculations.

AVAILABILITY of the proton-decoupled ¹³C n.m.r. technique enables us to obtain the nuclear spin coupling constant between ¹³C and nuclei other than protons, e.g. ¹⁹F, ³¹P, ¹⁴N. We report ¹³C-¹⁴N spin coupling constants for isocyanides, R-14N≡13C. The 13C-14N spin coupling constant in ¹³CH₃NC was measured from ¹³C satellite lines in the ¹H n.m.r. spectrum using a heteronuclear double-resonance technique.¹ However, the ¹⁴N-¹³C coupling constant in $R_{-14}N \equiv ^{13}C$ had not previously been obtained. Comparison of the ¹³C-¹⁴N coupling constant for the isocyanide bond with that for the cyanide bond is of interest in terms of the elucidation of the nature of the $N \equiv C$ bond in isocyanides. In isocyanides, the electronic symmetry about the nitrogen nucleus is expected to be sufficient to give the small electricfield gradient necessary to avoid losing the 13C-14N fine structure on account of quadrupolar relaxation (cf. H-14N coupling in isocyanides²). We have observed ¹³C-¹⁴N spin coupling constants for methyl, ethyl, and t-butyl isocyanides from proton-decoupled ¹³C n.m.r. spectra.⁺

Proton decoupling in ¹³C spectra enables one to eliminate the effect of long-range ¹³C-H coupling which broadens the ¹³C signal. A $^{13}C-\{H\}$ spectrum of ethyl isocyanide, for example, shows three carbon signals, the two lower-field signals having triplet fine structure due to coupling with the ¹⁴N nucleus and the highest-field one giving rise to a sharp singlet (see Figure). The resulting ¹³C-¹⁴N coupling constants and ¹³C chemical shifts are summarized in the Table. It is of interest to compare these values with those for the corresponding nitriles and various other types of hybrid bonds. McFarlane³ and Binsch et al.⁴ have obtained ¹³C-¹⁵N coupling constants for molecules containing various hybrid bonds. The corresponding ¹³C-¹⁴N coupling constants are available from these data by the relation $I({}^{13}C-{}^{14}N) = -0.713 \times I({}^{13}C-{}^{15}N)$. These values are compared with those for isocyanide in the Table. There are substantial differences in the values of $J_{\rm CN}$ for isocyanide and cyanide bonds. The magnitude of J_{CN} for a bond involving sp^3 -hybridized carbon is comparable with that for the $N \equiv C$ bond involving sp-carbon, and the latter is quite small compared with that for the $C \equiv N$ bond in cyanides. As has been shown by Binsch *et al.*,⁴ the carbon-nitrogen spin coupling constant is proportional to the product of the s-character of the atoms involved in the bond. However, this relation does not appear to hold for isocyanide.

In order to interpret the difference in $J_{\rm CN}$ values of isocyanide and cyanide bonds, the experimental values were examined theoretically. The Table also lists the

theoretical values of ¹³C-¹⁴N spin coupling constants obtained by INDO SCF-MO calculations⁵ for methyl isocyanide and methyl cyanide. Fermi contact terms as well as spin-dipolar and orbital terms are included in the

[†] The ¹³C spectra were recorded on a JEOL-4H-100 spectrometer operating at 25·15 MHz with an NSS (Nuclear Single Sideband) mode. The sample was placed in an 8 mm sample tube as neat liquid. Proton decoupling was accomplished with a JEOL IS-100 and SD-HC heterospin decoupler. calculation. The Fermi term is dominant for the $C \equiv N$ and the $N \equiv C$ bonds. The calculation predicts negative values of $J_{N=C}$ for isocyanide bonds, but positive values for cyanides.

The calculated $J_{\rm C-N}$ value in ¹³CH₃NC, small as compared with the experimental value, but the positive trend is in agreement with experiment. Though the sign of the $J_{N=C}$

- ¹ W. McFarlane, J. Chem. Soc. (A), 1967, 1660.
 ² I. D. Kuntz, jun., P. von R. Schleyer, and A. Allerhand, J. Chem. Phys., 1961, 35, 1533.
 ³ W. McFarlane, Mol. Phys., 1966, 10, 603.
 ⁴ G. Binsch, J. B. Lambert, B. W. Roberts, and J. D. Roberts, J. Amer. Chem. Soc., 1964, 86, 5564.
 ⁵ H. Nakatsuji, I. Morishima, H. Kato, and T. Yonezawa, to be published.

value has not been determined in the present study, a negative sign appears likely. If the trend predicted by MO calculations is accepted, one should not compare ¹³C-¹⁴N coupling constants for isocyanide and cyanide with relation to the hybridized nature of the bond, because signs of these coupling constants are different.

(Received, July 14th, 1970; Com. 1139.)